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Abstract

Using a distributed algorithm rather than a
centralized one can be extremely beneficial in
large search problems. In addition, the incor-
poration of machine learning techniques like
Reinforcement Learning (RL) into search algo-
rithms has often been found to improve their
performance. In this article we investigate a
search algorithm that combines these proper-
ties by employing RL in a distributed man-
ner, essentially using the team game approach.
We then present bi-utility search, which inter-
leaves our distributed algorithm with (central-
ized) simulated annealing, by using the dis-
tributed algorithm to guide the exploration
step of the simulated annealing. We investigate
using these algorithms in the domain of min-
imizing the loss of importance-weighted com-
munication data traversing a constellations of
communication satellites. To do this we in-
troduce the idea of running these algorithms
“on top” of an underlying, learning-free rout-
ing algorithm. They do this by having the
actions of the distributed learners be the in-
troduction of virtual “ghost” traffic into the
decision-making of the underlying routing al-
gorithm, traffic that “misleads” the routing al-
gorithm in a way that actually improves per-
formance. We find that using our original dis-
tributed RL algorithm to set ghost traffic im-
proves performance, and that bi-utility search
— a semi-distributed search algorithm that is
widely applicable — substantially outperforms
both that distributed RL algorithm and (cen-
tralized) simulated annealing in our problem
domain.

1 Introduction

Use of a centralized algorithm to perform search in large
spaces can be quite problematic. This is especially so
when the search problem is to find a control policy for a
large, distributed Multi-Agent System (MAS) in which
communication limitations restrict the amount of data
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that a centralized algorithm could exploit. Satisfactory
performance in such domains may not be possible at
all unless one uses a distributed rather than centralized
algorithm.

A canonical example of such a control problem, cen-
tral to mid-term NASA interplanetary missions, is con-
trolling the communication of scientific data up from a
planet, across an orbiting constellation of communica-
tion satellites orbiting that planet, and thence down to
Earth. In addition to its distributed nature, this do-
main presents a number of other difficulties. One is
that the satellites must be able to exercise a large degree
of autonomy, since communication with earth can take
hours. Another is the need for robustness and adaptabil-
ity, since the communication loads can be quite unpre-
dictable. Both of these difficulties argue for the use of
learning algorithms to perform the distributed control.
In particular, the technique of Reinforcement Learning
(RL) has often been successfully applied to search algo-
rithms [6; 14; 26], and suggests itself for this domain.
More generally, integrating such RL into a distributed
algorithm may be highly beneficial for many distributed
control problems.

In this article we concentrate on algorithms that
achieve this integration by having the agents in the MAS
each run RL algorithms. The design problem is how to
ensure that as those agents each try to optimize the val-
ues of their personal utility functions, an overall “world
utility function”, quantifying the desirability of the var-
ious possible behaviors of the overall system, is maxi-
mized. Though most naturally viewed as a means of dis-
tributed control, such an approach can actually be used
for distributed search in general, by identifying each of
the distributed components of the search problem with
an agent.

The COllective INtelligence (COIN) framework ad-
dresses such design problems [20; 23; 24]. That work
has focussed on modifying the agents’ personal utility
functions so that they induce the best possible value of
the world utility function. The learning-based search al-
gorithms we have explored to date based on the COIN
framework have been extremely successful. In fact, even
in domains where centralized algorithms can be used,
due to their adaptability and their exploiting the learn-



ing power of each of the individual agents COIN-based
systems typically perform better than such centralized
algorithms.

Nonetheless, many centralized algorithms have a num-
ber of well-understood strengths, that if integrated with
a distributed RL approach like that of COINs might re-
sult in performance better than either approach alone.
In addition, often search algorithms that are convention-
ally viewed as centralized can be implemented in a quasi-
distributed manner. This opens up the possibility that
a hybrid of such an algorithm with a distributed RL al-
gorithm might not only achieve better performance than
either alone, but also be implementable in a large dis-
tributed problem domain.

In this paper we investigate hybrids of distributed RL
algorithms and search algorithms that are (convention-
ally viewed as) centralized. We concentrate on the use
of Simulated Annealing (SA) as the centralized algo-
rithm. SA is a natural choice because its behavior and
strengths are very well-understood [1; 4; 5; 13; 16; 17;
21] In addition, at the expense of periodic centralized
broadcasts to all agents of whether to choose a new ac-
tion or repeat their most recent one, and of associated
measurements of global performance, SA can be imple-
mented in a quasi-distributed manner. No inter-agent
communication is required beyond those broadcasts and
measurements.

As our problem domain in this paper we concentrate
on the problem of minimizing the importance-weighted
loss of scientific data flowing across a constellation of
communication satellites. The first contribution of this
paper is a novel “baseline” distributed control algorithm
for this domain, one that involves no learning. To min-
imize the number of confounding distinctions between
that baseline algorithm and the COIN algorithm we in-
vestigate, we have that COIN algorithm “run on top”
of the baseline algorithm. More precisely, our second
contribution is to use a baseline algorithm in concert
with a COIN algorithm in which each agent’s action
is the determination of fictitious “ghost traffic” that
is presented to the baseline algorithm, thereby (hope-
fully) inducing that baseline algorithm to achieve an
even better value of the world utility. (Note that this
idea can be applied with most any baseline algorithm
and most any distributed RL algorithm.) In this pa-
per we investigate the simplest kind of COIN algorithm,
which essentially works by using the team game (TG) ap-
proach [8]. Our final contribution is the hybrid of that
distributed RL algorithm with SA, a hybrid we call “bi-
utility search”. This hybrid works by interleaving the
Boltzmann-distribution-based exploitation step of con-
ventional SA with a novel exploration step, where rather
than have the overall system randomly step away from
the current point each agent takes a step that its RL
algorithm recommends.

In the next section we discuss the use of distributed
RL in the context of our particular problem domain.
In Section 3 we define that problem domain in a fully
formal manner. Then in Section 4 we present experi-

mental comparisons of TG-based bi-utility search with
both TG and SA in that domain. We find that using
our original distributed RL algorithm to set ghost traf-
fic improves performance, and that bi-utility search —
a semi-distributed search algorithm that is widely appli-
cable — substantially outperforms both that distributed
RL algorithm and (centralized) simulated annealing in
our problem domain.

2 Background

Many future NASA projects will involve data travers-
ing a constellation of communication satellites. In such
a constellation, each satellite continually receives data
(e.g., data uplinked from a planet, relayed from another
satellite, or even directly observed), and needs to relay
this data along a path back to Earth. In general, differ-
ent data are likely to have different levels of importance.
Accordingly, a suitable overall goal for such a constel-
lation to minimize is the total importance-weighted loss
of data across the network. We can cast this as max-
imizing a world utility function given by the negative
of that loss. Due to various hardware limitations (e.g.,
storage, power, bandwidth), even at those times that a
particular satellite has a direct link to Earth, to maxi-
mize this world utility, it will often still be preferable for
that satellite to route its current data across other satel-
lites rather than send it directly to Earth For example,
since we are implicitly assuming multiple communication
transmitters at each satellite, it may benefit a satellite to
drain its current disk by offloading data to other satel-
lites while it is also downloading data to Earth. In this
way, the disk will be emptier and therefore better able
to accommodate future data surges.

Clearly given the time delays and hardware limita-
tions inherent in this problem, one would like to use
as decentralized an algorithm as possible for determin-
ing the routing. Unfortunately, while they can be
implemented in decentralized forms, traditional rout-
ing algorithms (e.g., shortest path algorithms [2; 3;
10]) are ill-suited for our world utility function. Accord-
ingly, in this study we had to first develop a non-learning
“baseline” distributed routing algorithm, one that we ex-
pect will do well for our world utility. To create a dis-
tributed RL version of that algorithm we then consider
the use of “ghost” traffic, which is non-existent traffic
that is presented along with the real traffic to the base-
line routing algorithms running on the satellites. The
goal of the learning is to find such ghost traffic that will
“fool” the baseline algorithm into having the satellites
take better routing decision (as far as world utility is
concerned) than they would otherwise.

A natural choice for the type of learning to use to op-
timize ghost traffic is RL [6; 8; 12; 15; 19; 26]. Indeed,
distributed MAS control algorithms in which the agents
independently attempt to maximize their personal util-
ities using RL have been successfully used to optimize
world utility in several large decentralized problems [11;
14; 18; 20; 22; 23; 24]. In the TG approaches in par-



ticular [8], every agent uses RL with its utility set to
the world utility, so the only centralized communication
needed is periodic broadcasts of the world reward signal
(in our case presumably calculated on Earth where all
the data is collected), a signal shared by all agents. This
contrasts with conventional centralized RL, in which the
information periodically broadcast has to be “person-
alized” to each satellite, being that satellite’s updated
routing policy.

There are a number of major shortcomings of conven-
tional TG however. One of them is that for large systems
each agent faces an overwhelming signal-to-noise prob-
lem in determining how its actions affect the rewards it
receives [25]. Another arises from the fact that each
agent’s predictions of expected rewards is independent
of the other agents’ actions, i.e., each agent ¢ considers
a distribution of the form:

P(utility | action;; observation;)
rather than one of the form
P(utility, | actiony, actions, ..., ; observation;).

Unfortunately, it is quite common that utility is max-
imized at one joint action profile (action},actions, ...),
but that due to the historical probability distribu-
tion over action profiles, action} does not maximize
E(utility, | action;; observation;), and therefore is not
taken by agent i. In essence, there is a synchronization
problem.

To simplify matters, we consider TG using the sim-
plest possible RL algorithm, in which each learner makes
no observations and uses no lookahead, choosing its ac-
tion (ghost traffic level) at any moment by sampling a
Gibbs distribution! over its estimates for the associated
rewards [7; 23]. For stationary traffic patterns, with such
RL algorithms the natural performance measure is given
by the function taking joint-action profiles to the world
reward.

One distributed approach to such a search problem
that avoids the synchronization difficulty of TG while
still only requiring the centralized broadcast of informa-
tion that isn’t personalized is simulated annealing (SA)
[1; 9]. The variant of SA considered here repeats a two-
step process. In the decentralized “exploration step”, all
agents make (usually small) random changes in their ac-
tion. In the subsequent centralized “exploitation step”,
a Gibbs distribution over the associated rewards is sam-
pled to choose between the new action profile and the
previous one. That (non-personalized) choice — use
your new action or your previous one — is then broad-
cast out to all the agents. (Note that such a broadcast is
no more personalized than the world reward value that
must be similarly broadcast in TG.) The major disad-
vantage of SA compared to distributed RL is that only
one “learner” is exploited in SA, at the central location.

T.e., choose action a; with estimated reward R; with

probability p(a;) = %
j 3

the “temperature” parameter which controls the explo-
ration/exploitation tradeoff.

, where T determines

In this article we introduce “bi-utility search”, which
is a hybrid of SA and distributed RL that combines the
strengths of both. Bi-utility search is identical to SA,
except that the random perturbation of each agent’s ac-
tion occurring in the exploration step is replaced by a
perturbation determined by the RL algorithm of that
agent. Since the exploitation of SA is used, the syn-
chronization problem of distributed RL is avoided. On
the other hand, since the exploration of distributed RL
is used, the blind random nature of SA is replaced by a
(hopefully) more intelligent RL-guided process. Particu-
larly in large domains, we would expect that that guiding
might provide major improvements in performance.

3 Constellations of Satellites

In our simulations each satellite i has a storage ca-
pacity ¢;, measured in amount of data. It also has a
bandwidth (also measured in amount of data, implic-
itly per unit time interval) b;, to each other satellite k.
Earth is simply a special satellite with ¢cg = co. At each
time step ¢, an amount of new data y;;; of importance
J is introduced to the system at satellite i. We add y;;:
to the total amount of data of importance j received by
1 from all other satellites at ¢ and then to the amount of
unsent data on the disk left over from the previous time
step to get the total volume of data of importance j at ¢
at t, vij. Ity j Vijt > Ci, then that difference constitutes
the amount of data lost at satellite ¢ at t. We assume
that the same proportion of data is dropped for each im-
portance level, since once the disk is full the satellite is
unable to examine any data sent to it and determine its
priority.

Define 1;j; to be the amount of data of importance j
lost (i.e., dropped) at satellite ¢ at t. Define the asso-
ciated cost as [;;;w; for some data-importanceweights
wj. Then the objective function we wish to maximize is
the time-average of

>ij wilije

Gt =1- .
Zz’j W;Yijt

(1)

Denote a path by a sequence of satellites § =
S1,...,8p, Where s; represents the originating satellite
and s, is the satellite which ultimately sends the packet
to Earth. At each t each satellite ¢ evaluates a potential
decision to send some data to satellite k£ by estimating
the “headroom” of the optimal path to Earth beginning
at k. The headroom of path §is the available room for
additional data, given the available storage capacity on
each satellite along § and the bandwidth of each connec-
tion along 3. Formally, the headroom H(3) of a path §
is given by:

H(é’) = min (min(bsq,8q+17 Csqy1 — Z U3q+1,j,t)) . (2)
q€{1a~~~p} ]

The presumption is that a path that currently has head-

room should be favored over one with low headroom,

since the likelihood of data being dropped is lower. This



is just like how a path with low current cost is favored
over a path with high current cost in traditional Shortest
Path (SP) data routing [2; 3]).

Note that in a real system, a particular satellite ¢ does
not have access to the precise vjit,j # ¢ at the current
t. Hence the current headroom values would have to be
estimated by satellites (just as current cost values are
estimated in SP routing). Because we are interested in
how to improve the performance of the base algorithm, in
these experiments we ignore this issue and supply each
satellite with the current v;r. (The estimation of the
vjk¢ would introduce a systematic error that should not
affect the ranking of the algorithms discussed below).

It is straightforward to calculate the maximum head-
room path from each satellite to Earth using a version
of Dijkstra’s shortest path algorithm [3; 10]. Let H;;; be
the time ¢ headroom of the optimal path originating at
satellite ¢ and with the first hop being to satellite j. The
satellite at which data originates does not directly decide
on the full path to Earth taken by the data it transmits;
it simply decides on the first hop in the path and sends
its data to the appropriate satellite based on the H;j;;’s.
(Similarly, in traditional data routing, a router only se-
lects the first hop along the seemingly shortest path,
based on the costs). More precisely, define

Jh = argmax;; Hij. (3)

If Hij» > v, then all of vy Vk is sent to satellite
Ju and H;j» is updated by subtracting vi off of the
headroom estimate to reflect the fact that that much
data has already been sent to that satellite. If H;j» <
vikt, then an amount H;jx is sent (highest importance
data first) to j#; and H;j: is updated to equal zero.

This procedure is then repeated until either:

1. Vikt = 0 Vk, or

If the second condition occurs before all data has been
routed, then the remaining data is not sent anywhere and
instead kept on the disk until the next iteration in the
hopes of routing it successfully then.

While this routing algorithm performs respectably, it
is susceptible to the same phenomena that hamper tra-
ditional SP routing [20]: the satellites do not explicitly
act to optimize GG, and can therefore potentially work
at cross-purposes. To alleviate this we introduce addi-
tive perturbations d;;; to the headroom estimates H;j¢
and then perform the routing according to the perturbed
headroom estimates. The d;;; are free parameters to be
determined via an optimization algorithm, and because
their effects on the headroom is the same as that of ac-
tual data, we call them “ghost” traffic. Our goal then
is to find the {d;;;} at each t that optimize the time-
average of G;({d;5:}) — a search problem. In this paper
we consider performing that search via two variants of
simulated annealing, team game reinforcement learning
and bi-utility search.

4 Experimental Results

In our experiments we had three importance levels (w; €
{1,2,3}). For each satellite, for each importance level, at
each ¢, new traffic was introduced by uniformly sampling
[0.0, 0.5]. We used a network of moderate connectivity
with 20 satellites altogether (150 ¢’s for each ¢). For
the purposes of learning, we associated the actions of an
“agent” at t with the setting of d;;; for a particular ij
pair.

As mentioned before, to focus on the goals of the in-
dividual RL-based agents’ rather than on how they try
to achieve those gaols, we used the simplest possible RL
algorithms in the TG agents. Since they make no ob-
servations, formally each such an agent has one “state”.
Each agent’s possible actions (ghost traffic on a particu-
lar link) are chosen from the set of discrete values {-5, -4,
.., 4}. To reflect the nonstationarity in the environment,
each agent applies proportional updating to average its
empirically collected training data, giving an estimated
reward value for each candidate action. (We had the
geometric updating factor set to .1 always.) The RL al-
gorithm then decides what action to take by sampling
a Gibbs distribution over those associated reward esti-
mates (cf. Section 1), using a decaying temperature pa-
rameter. Temperatures annealed linearly from .1 down
to .01 after 5000 7 intervals had passed.

We investigate five overall search algorithms. Each of
them uses “time steps”, labeled by 7, that consist of 200
consecutive t values of the underlying system. “G.” for
each such “time step” is then defined to be the average
G, over that interval. (Note that successive values of
G, are not statistically independent; some “leakage” of
system behavior will occur across the boundary between
successive 7.) We took d to be constant across each such
time step.

e Baseline:
learning.

e Team Games (TG): Each agent uses the RL algo-
rithm described above to try to independently max-
imize G, at each 7.

Algorithm outlined in Section 3; no

¢ Simulated Annealing (SA): A two-step process
is iterated. First the § matrix of the previous time
step is perturbed (uniformly) randomly and the re-
sulting § matrix is implemented in the system. The
ensuing G, is measured (exploration), and at the
next 7 that vector is probabilistically “accepted or
rejected” in favor of the pre-perturbation vector, by
sampling a Gibbs distribution over the two associ-
ated recorded G values (exploitation). The vector
so chosen is implemented, the ensuing G, measured,
and the process repeats.

e “Localized” Simulated Annealing: Simulated
annealing modified by restricting each component
of the new perturbation vector to be at most one
bin away from the old one.

e G-Based Simulated Annealing (bi-utility
search): Localized simulated annealing modified



by having each component of the new perturbation
vector set by having the associated TG agent choose
among the 3 candidate bins.

0.45
-E ':’ . g-Bg-g-0-0-0--0--
o # »E,Erra——E»'E"BA'B”B——B RaRNai
; 039 g ‘vE‘——EI—'Ei"E" |
m b
x
T [
£036 ' G-Based SA — |
L% Localized SA —+—
SA e
0.33 G - |
Baseline -+
0.3
0 500 1000 1500 2000 2500
time

Figure 1: Overall performance of the algorithms in the
communication satellites problem
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Figure 2: Exploration step performance for localized and
G-guided simulated annealing.

Figure 1 compares the performance of these five algo-
rithms on the network described above, averaged over
100 runs (the resulting error bars are too small to de-
pict). The team game RL algorithm performs better
than the baseline algorithm. However, the simulated
annealing results show that TG is falling prey to prob-
lems like that of synchronization. When SA’s minimal
need for centralized broadcast information can be met,
it should be used rather than TG. Next, note that the
localized version of of SA significantly outperforms stan-
dard SA, reflecting the inherent smoothness of the sur-
face being searched. Finally, while both localized SA

and bi-utility search are superior to both TG and SA,
the G-guided version (bi-utility search) is the clear win-
ner. This demonstrates that that algorithm does suc-
cessfully combine the strengths of simulated annealing
and reinforcement learning.

Figure 2 shows the G, of the ’s generated by the
exploration steps of the two algorithms. RIL-based ex-
ploration clearly produces better states, and this gap in
performance increases in time. This translates into its
higher performance.

5 Discussion

In search problems over large spaces, even if it is phys-
ically possible to use a centralized search algorithm, of-
ten one might expect that better performance would be
achieved using a distributed rather than a centralized
algorithm, due to its parallelization advantage. This
raises the issue of what algorithms to run on each of the
“agents” in such a distributed algorithm. Recent work
has demonstrated that Reinforcement Learning (RL) can
be quite gainfully applied to centralized search algo-
rithms [6; 14; 26]. Here we investigate extending RL
into a distributed setting.

We start by presenting a distributed RL search al-
gorithm very similar to Team Games (TG) [8; 23].
In particular, we present experiments showing how to
use this algorithm to determine the “ghost traffic”
to be introduced into a pre-fixed algorithm designed
for routing communication data across a constellation
of satellites, in the hopes of fooling that algorithm
into performing better. Our experiments indicate that
this distributed RL algorithm significantly reduces the
importance-weighted amount of data lost in such a do-
main.

Unfortunately, TG has many shortcomings, includ-
ing a “signal-to-noise” problem and a “synchronization”
problem. The first problem can be addressed using
the COllective INtelligence (COIN) framework [20; 23;
24]. The second can be obviated if (non-personalized)
periodic broadcast signals are allowed. In particular,
Simulated Annealing (SA) only uses such signals, and
avoids the synchronization problem. In fact, we find
that SA outperforms TG in our problem domain.

We introduce bi-utility search as a way to exploit
the parallelization advantage of a distributed algorithm
without incurring the difficulties of TG. This procedure
interleaves a distributed algorithm (e.g., TG) with SA,
by using the distributed algorithm to govern an explo-
ration step, which is followed by the exploitation step
of SA. Our experiments show that TG-based bi-utility
search substantially outperforms both TG and SA in our
constellation of communication satellites domain.

As investigated here, bi-utility search uses Gibbs sam-
pling both for the exploration and exploitation steps. It
also uses world reward in both of those Gibbs samplers.
None of that is a priori necessary; bi-utility search is a
general approach for combining a centralized exploita-
tion step with a decentralized exploration step. In par-



ticular, the distributed algorithm can be based on the
COIN framework, and thereby avoid the signal-to-noise
problem of TG. Preliminary results not reported here in-
dicate that such COIN-based bi-utility search performs
even better than TG-based bi-utility search. We are cur-
rently investigating these issues further.
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